
Iptables: Experiment No.6

All data is sent in the form packets over the internet. Linux kernel provides an
interface to filter both incoming and outgoing traffic packets using tables of
packet filters. Iptables is a command line application and a Linux firewall that
you can use to set-up, maintain and inspect these tables. Multiple tables can be
defined. Each table can contain multiple chains. A chain is nothing but a set of
rules. Each rule defines what to do with the packet if it matches with that packet.

When the packet is matched, it is given a TARGET. A target can be another

chain to match with or one of the following special values:

•ACCEPT: It means the packet will be allowed to pass through.

•DROP: It means that packet will not be allowed to pass through.

•RETURN: It means to skip the current chain and go back to the next rule

from the chain it was called in.
For the scope of this iptables tutorial, we are going to work with one of the

default tables called filter. Filters table has three chains (sets of rules).

•INPUT – This chain is used to control incoming packets to the server.

You can block/allow connections based on port, protocol or source IP
address.

•FORWARD – This chain is used to filter packets that are incoming to the

server but are to be forwarded somewhere else.

•OUTPUT – This chain is used to filter packets that are going out from

your server.

Step 1 – Installing Iptables Linux Firewall

1. Installing Iptables

Iptables comes pre-installed in almost all of the Linux distributions. But if you
don’t have it installed on Ubuntu/Debian system use:

sudo apt-get update
sudo apt-get install iptables

2. Checking current Iptables status

With this command, you can check the status of your current Iptables

configuration. Here -L option is used to list all the rules and -v option is for a

more tedious list. Please note that these options are case sensitive.

sudo iptables -L -v

Example output:

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source
destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source
destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source
destination

This is the output of the above command. Here, all three chains are set to

default ACCEPT policy. There are currently no rules for any of the chains.

To make this Iptables tutorial more practical, we will modify the INPUT chain to

filter the incoming traffic.

Step 2 – Defining chain rules
Defining a rule means appending it to the list (chain). Here’s the Iptables
command formatted with regular options. We don’t have to specify all of them.

sudo iptables -A -i <interface> -p <protocol (tcp/udp) > -s
<source> --dport <port no.> -j <target>

Here -A stands for append. The chain refers to the chain we want to append

our rules. The interface is the network interface on which you want to filter the

traffic. The protocol refers to the networking protocol of packets you want to

filter. You can also specify the port, no of the port on which you want to filter

the traffic.

1. Enabling traffic on localhost

We want all communications between applications and databases on the server
to continue as usual.

sudo iptables -A INPUT -i lo -j ACCEPT

Example output:

Chain INPUT (policy ACCEPT 7 packets, 488 bytes)
pkts bytes target prot opt in out source
destination
0 0 ACCEPT all -- lo any anywhere
anywhere

Here -A option is used to append the rule to the INPUT chain, accept all

connections on lo interface. lo means loopback interface. It is used for all the

communications on the localhost, like communications between a database and
a web application on the same machine.

2. Enabling connections on HTTP, SSH, and SSL port

We want our regular HTTP (port 80), https (port 443), ssh (port 22) connections
to continue as usual. Enter the following commands to enable them. In the

following commands, we have specified protocol with -p option and the

corresponding port for each protocol with –dport (destination port) option.

sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT

Now all TCP protocol connections with specified ports will be accepted.

3. Filtering packets based on source

If you want to accept or reject packets based on the source IP address or the

range of IP addresses you can specify it with -s option. For example to accept

packets from address 192.168.1.3 –

sudo iptables -A INPUT -s 192.168.1.3 -j ACCEPT

You can drop packets from an IP address with a similar command with option
DROP .

sudo iptables -A INPUT -s 192.168.1.3 -j DROP

If you want to drop packets from a range of IP addresses you have to use the

Iprange module with -m option and specify the IP address range with –src-
range.

sudo iptables -A INPUT -m iprange --src-range 192.168.1.100-
192.168.1.200 -j DROP

4. Dropping all other traffic

Note: It is important to DROP all other traffic after defining the rules as it

prevents unauthorized access to a server from other open ports.

sudo iptables -A INPUT -j DROP

This command drops all incoming traffic other than the ports mentioned in the
above commands. You can check your set of rules now with:

sudo iptables -L -v

5. Deleting rules

If you want to remove all rules and start with a clean slate you can use the flush
command.

sudo iptables -F

This command deletes all current rules. If you want to delete a specific rule you

can do it with -D option. First, list all the rules with numbers by entering following

command:

sudo iptables -L --line-numbers

Then you will get a list of rules with numbers.

Chain INPUT (policy ACCEPT)
num target prot opt source destination
1 ACCEPT all -- 192.168.0.4 anywhere
2 ACCEPT tcp -- anywhere anywhere tcp dpt:https
3 ACCEPT tcp -- anywhere anywhere tcp dpt:http
4 ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

To delete a rule specify the number in the list and the chain of the rule. In our

case INPUT chain and number 3.

sudo iptables -D INPUT 3

Step 3 – Persisting changes
Iptables rules we have created are saved in memory. That means we have to
redefine them on reboot. To make these changes persistent after reboot, use the
following command on Ubuntu/Debian systems:

sudo /sbin/iptables-save

This command saves current rules to system configuration file which is used to
reconfigure the tables at the time of reboot. You should run this command
everytime you make changes to the rules. To disable this firewall simply flush all
the rules and make the changes persistent.

sudo iptables -F
sudo /sbin/iptables-save

Conclusion
In this Iptables tutorial, we have used Iptables Linux firewall to only allow traffic
on specific ports. We have also made sure that our rules will be saved after
reboot. This Linux firewall will drop unwanted packets, but there is a caveat here
that Iptables can govern only ipv4 traffic.

Assignment:

1. Design a Linux service to block ssh requests after 3 consecutive
failed attempts

	Iptables: Experiment No.6
	Step 1 – Installing Iptables Linux Firewall
	1. Installing Iptables
	2. Checking current Iptables status

	Step 2 – Defining chain rules
	1. Enabling traffic on localhost
	2. Enabling connections on HTTP, SSH, and SSL port
	3. Filtering packets based on source
	4. Dropping all other traffic
	5. Deleting rules

	Step 3 – Persisting changes
	Conclusion

